|
Memetic algorithms (MA) represent one of the recent growing areas of research in evolutionary computation. The term MA is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MA are also referred to in the literature as Baldwinian evolutionary algorithms (EA), Lamarckian EAs, cultural algorithms, or genetic local search. ==Introduction== Inspired by both Darwinian principles of natural evolution and Dawkins' notion of a meme, the term “Memetic Algorithm” (MA) was introduced by Moscato in his technical report in 1989 where he viewed MA as being close to a form of population-based hybrid genetic algorithm (GA) coupled with an individual learning procedure capable of performing local refinements. The metaphorical parallels, on the one hand, to Darwinian evolution and, on the other hand, between memes and domain specific (local search) heuristics are captured within memetic algorithms thus rendering a methodology that balances well between generality and problem specificity. This two-stage nature makes them a special case of Dual-phase evolution. In a more diverse context, memetic algorithms are now used under various names including Hybrid Evolutionary Algorithms, Baldwinian Evolutionary Algorithms, Lamarckian Evolutionary Algorithms, Cultural Algorithms, or Genetic Local Search. In the context of complex optimization, many different instantiations of memetic algorithms have been reported across a wide range of application domains, in general, converging to high-quality solutions more efficiently than their conventional evolutionary counterparts. In general, using the ideas of memetics within a computational framework is called "Memetic Computing or Memetic Computation" (MC). With MC, the traits of Universal Darwinism are more appropriately captured. Viewed in this perspective, MA is a more constrained notion of MC. More specifically, MA covers one area of MC, in particular dealing with areas of evolutionary algorithms that marry other deterministic refinement techniques for solving optimization problems. MC extends the notion of memes to cover conceptual entities of knowledge-enhanced procedures or representations. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Memetic algorithm」の詳細全文を読む スポンサード リンク
|